Thermal luminescence quenching of amine-functionalized silicon quantum dots: a pH and wavelength-dependent study.

نویسندگان

  • Surajit Chatterjee
  • Tushar Kanti Mukherjee
چکیده

Understanding and resolving the mechanisms that affect the photoluminescence (PL) of Si QDs are of great importance because of their strong potential for optoelectronic and solar cell materials. In this article, the intrinsic exciton dynamics of water-dispersed allylamine-functionalized silicon quantum dots (Si QDs) have been explored as a function of temperature by means of steady-state and time-resolved PL spectroscopy. Significant PL quenching of Si QDs has been observed with increase in temperature from 278 K to 348 K. This thermal quenching is found to be a reversible process. The mechanism involves nonradiative reversible relaxation of conduction band electrons through the thermally-created temporary trap states. These temporary trap states arise due to the displacement of surface atoms from their regular positions at elevated temperature. Upon cooling, these surface irregularities relax back to their equilibrium positions with retrieval of the original PL intensity. It has been observed that the quenching mechanism is strongly influenced by the pH and excitation wavelength (λex). At pH 3.5, the quenching mechanism involves nonradiative relaxation of conduction band electrons through the thermally-created temporary trap states. However, at pH 7.4, the unprotonated surface amine groups introduce permanent nitrogen-related surface defects inside the bandgap of Si QDs. At elevated temperature, the conduction band electrons get trapped in these nitrogen-related surface defects through the involvement of thermally-created temporary trap states. Subsequent exciton recombination of these nitrogen-related defect states results in red-shifted green color luminescence. By using the Arrhenius equation we have estimated the activation energy of this nonradiative thermal relaxation process and it was found to be 138 and 139 meV at pH 3.5 and pH 7.4, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots.

Quantum dots are known for their superior optical properties; however, when transferred into aqueous media, their luminescent properties are frequently compromised. When encapsulated in micelles for bioimaging applications, luminescent silicon quantum dots can lose as much as 50% of their luminescence depending on the formulation used. Here, we create an energy transfer micelle platform that co...

متن کامل

Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence

We have examined the optical properties of self-assembled InAs quantum dots ~QDs! with polarization sensitive and time-resolved cathodoluminescence ~CL! techniques. The InAs QDs were formed via self-assembly during molecular beam epitaxial growth of InAs on unpatterned GaAs~001!. CL spectra exhibited a two-component line shape whose linewidth, intensity, and peak positions were found to be temp...

متن کامل

L- and D-cysteine functionalized CdS quantum dots as nanosensors for detection of L-morphine and D-methamphetamine

A new method in differentiation of chiral molecules is reported based on the fluorescence quenching of functionalized CdS quantum dots (CdS-QDs) as nanosensor by differing in the chirality of functionalization species. The chemically functionalized CdS-QDs with strong yellow emission were prepared using chiral L-cysteine (L-Cyst) and D-cysteine (D-Cyst) molecules. Then, the functionalized CdS-Q...

متن کامل

Enhanced Raman and luminescence spectra from co-encapsulated silicon quantum dots and Au-Ag nanoalloys.

We report an approach to enhance simultaneously luminescence and SERS signals with a single excitation wavelength by co-encapsulating silicon quantum dots and Au-Ag alloy nanoparticles encoded with Raman reporter molecules inside polymeric nanoparticles. The SERS-luminescence enhancement exploits the large Stokes shift of silicon quantum dots, which allows 'room' for the display of a Raman spec...

متن کامل

Quantum dot-layer-encapsulated and phenyl-functionalized silica spheres for highly luminous, colour rendering, and stable white light-emitting diodes.

Although the quantum efficiencies of quantum dots (QDs) are approaching unity through advances in the synthesis of QD materials, their luminescence efficiencies after mixing with resin and thermal curing for white light-emitting diodes (LEDs) are seriously lowered because of aggregation and oxidation of QDs and poor adhesion of QDs to the resin. To overcome these problems, QD-layer-encapsulated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 37  شماره 

صفحات  -

تاریخ انتشار 2015